
Building Faster Drupal Sites
Adventures in optimizing the critical path and intelligent asset management

Who am I?

● Front-end Drupal Developer at Chapter Three
● Life-long HTML addict
● @bollskis

Measure everything, for science

Measure early and often

Web page test is the best tool to measure your performance. Page speed
insights will help you fine-tune your site.

● www.webpagetest.org
● https://developers.google.com/speed/pagespeed/insights/

http://www.webpagetest.org
http://www.webpagetest.org
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

Optimizing the critical path &
Drupal

What is the critical path?

tl:dr; The steps from download to render.

The browser turns our HTML, CSS, and JavaScript into a usable page. The
critical path is the steps the browser takes to render the code we give it.

The key to optimizing for the critical path? Stop shoving it full of so much shit.

Critical Path Blockers

These items will require the browser to download them before rendering.

● Any CSS file
● Any non-async JS file
● External fonts
● External JS libraries
● External Media assets

ASYNC LOAD ALL THE THINGS!

But I need [insert external piece of shit]. How do I load it so it doesn’t block the
critical path?

Like all problems in our current web environment, let’s solve it with JavaScript!

LoadCSS, loadJS, and the Filament Group to the rescue.

LoadCSS … loads…
CSS

But it loads it asynchronously, so the
file doesn’t block the critical path.

Further reading

● https://developers.google.com/web/fundamentals/performance/critical-
rendering-path

● Google “Delivering the goods Paul Irish”
● https://www.filamentgroup.com/lab/performance-rwd.html

https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path

Responsive images in core!

Responsive images are here and they’re
badass

<picture> is supported in most major browsers, and Drupal 8 has responsive
images in core.

Utilizing the <picture> element is key to a well-built responsive site. And it’s
really not that difficult to use.

Hero Banners

A hero banner is usually a large image
that resides at the top of the page.

If you’re not changing resolutions,
responsive hero banners could not be
simpler to set up.

Empty mobile
images

Sometimes we want an image for
larger display, and not for mobile. We
can do this without a nasty display:
none;!

SVG icons are better than font
icons.

Because, reasons:

● Faster
● Better for screen readers
● Better for i18
● Semantically sound
● Did I mention faster?

More reading: https://css-tricks.com/icon-fonts-vs-svg/

SVGs are just as easy to use (in theory)

Instead of

<i class=”fa fa-bars”></i>

We use

<svg class=”icon icon-bars”>
 <use xlink:href=”#icon-bars”></use>
</svg>

Similar syntax, and not an icon system snuck
into a font.

Gulp can watch a folder of icons and compile it
into a single SVG sprite.

Inline the SVG sprite into html.html.twig for best
x-browser support.

SVG Resources

Just a few good resources to learn more about SVG icon systems

● https://css-tricks.com/icon-fonts-vs-svg/
● https://css-tricks.com/svg-sprites-use-better-icon-fonts/
● https://github.com/encharm/Font-Awesome-SVG-PNG/
● https://github.com/google/material-design-icons

https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/svg-sprites-use-better-icon-fonts/
https://css-tricks.com/svg-sprites-use-better-icon-fonts/
https://github.com/encharm/Font-Awesome-SVG-PNG/
https://github.com/encharm/Font-Awesome-SVG-PNG/
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons

Cutting the mustard

Serving content to
users that can’t
handle it is plain
rude.

Cutting the mustard means testing the
user's environment before serving up
enhanced content.

Serve the smallest
amount of data
first
Only enhance your page with certain
features once you know they’re
supported.

A great example is the chapterthree.
com homepage. We autoplay a video,
but we don’t even want a video if you
can’t autoplay it.

Put up or shut up

Old vs New Chapter Three homepage

New

Old

Now go and make shit fast :)

